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Abstract

We prove that the Penrose limit of a spacetime along a homogeneous geodesic is a homogeneous plane
wave spacetime and that the Penrose limit of a reductive homogeneous spacetime along a homogeneous
geodesic is a Cahen–Wallach space. We then consider several homogenous examples to show that these
results are indeed sharp and conclude with a remark about the existence of null homogeneous geodesics.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In [25] Penrose introduced a method for taking a continuous limit of any spacetime to a
plane wave. The method effectively involves “zooming in" on a null geodesic in such a way
that the metric stays nondegenerate. In [14] Güven extended the method to that of supergravity
theories where it is a useful tool for generating new solutions to the supergravity equations from
known ones. Since then several papers have investigated the properties of these Penrose limits,
[3–6,24].

Penrose limits have been used as evidence for the AdS/CFT correspondence. The Penrose
limits of the AdS5 × S5 type IIB superstring background were calculated in [5], one of which
was shown to be the BFHP maximally supersymmetric plane wave background [4]. String theory
in this background is exactly solvable [21,22] giving rise to an explicit form of the AdS/CFT
correspondence [2] in which both the gauge theory and the gravity sides are weakly coupled,
allowing many perturbative checks albeit for a restricted class of observables.
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A more general class of background metrics on which string theory is exactly solvable are
the homogeneous plane waves [8,23]. Penrose limits onto homogeneous plane waves have
been investigated, such as the Penrose limits of the Gödel-like spacetimes [6]. In [5] it was
shown that the dimension of the isometry algebra never decreases under a Penrose limit.
Hence it seemed a “natural" assumption that the Penrose limit of a homogeneous spacetime
is always a homogeneous plane wave. However, in [24] it was shown that the cross product
of the homogeneous Kaigorodov spacetime with a sphere has a Penrose limit which is not
itself homogeneous. Consequently the aim of this paper is give necessary and sufficient
conditions on a spacetime and the null geodesic that guarantee that the Penrose limit is
homogeneous.

Section 2 gives the definition of the Penrose limit and proves that this definition is well–defined.
We also give a proof of the covariance property of the Penrose limit stated in [5].

Section 3 gives some examples of known hereditary properties of the Penrose limit. Section 4
contains the background on homogeneous spaces needed for our results. This includes descriptions
of reductive homogeneous spaces, naturally reductive homogeneous spaces, the Killing transport
and homogeneous geodesics.

In Section 5 we use the Killing transport to prove that the Penrose limit of a lorentzian spacetime
along a homogeneous geodesic is a homogeneous plane wave. We then use a similar approach to
prove that the Penrose limit of a reductive homogeneous spacetime along a homogeneous geodesic
is a reductive homogeneous plane wave.

In Section 6 we use the classification of homogeneous plane waves that was given in [7] to prove
that the Penrose limit of a reductive homogeneous spacetime along an absolutely homogeneous
geodesic is a naturally reductive plane wave.

In Section 7 we first show that the Penrose limit of a non–homogeneous spacetime can be
homogeneous. Then we describe the Kaigorodov spacetime and its Penrose limits as calculated
in [24]. We give an example of a Penrose limit of a reductive homogeneous space along a homo-
geneous geodesic for which the homogeneous structure “blows up” but the limiting spacetime is
still homogeneous. We also give an example of a Penrose limit of a non–reductive homogeneous
spacetime along a homogeneous geodesic which is still non–reductive homogeneous.

Finally in Section 8 we show that while there must exist at least one homogeneous geodesic
in any reductive homogeneous spacetime [19,18], there may not exist any null absolutely homo-
geneous geodesics.

2. What is a Penrose limit?

Let (M,g) be a smooth (n+ 1)-manifold with a lorentzian metric. Let γ be a null geodesic of
(M,g). Then given a point x ∈ γ there exists a coordinate neighborhood (U,µ), µ : U → R

n+1,
of x defining coordinates µ(y) = (u(y), v(y), [yk(y)]), where u is a coordinate along γ , such that
in U the metric may be written as

g = dudv+ αdv2 +
n−1∑
i=1

βidy
idv+

n−1∑
i,j=1

Cijdy
idyj. (1)

Here α, βi, Cij are functions of (u, v, [yk]) and (Cij) is positive definite.
To choose such coordinates one chooses a one-parameter family of hypersurfaces parameter-

ized by v and foliated by null geodesics. The coordinate along the prescribed geodesics is given
by u and γ is given by (u, 0, 0).
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In other words, one chooses a local extension of the null geodetic tangent vectorfield
∂

∂u
of

γ to a null geodetic vector field in a neighborhood of x. Then one chooses (n− 1)-submanifolds
on which the restricted metric is riemannian and allows v to be the parameter labelling these
submanifolds.

Let Ω ∈ (0,∞). Consider the map

ψΩ : Rn+1 → R
n+1 : (u, v, [yk]) �→ (u,Ω2v, [Ωyk]). (2)

This map induces the following change of coordinates:

φUΩ = µ−1 ◦ ψΩ ◦ µ : U → U. (3)

(If necessary, to make this well defined, we may need to shrink U so that it does not contain any
“holes".) By patching together such coordinate neighborhoods along γ we may think of φΩ as a
diffeomorphism from a tubular neighborhood of γ to a tubular subneighborhood. If we apply this
change of coordinates to g, rescale the result byΩ−2 and then take the limit asΩ → 0 we obtain
a well defined metric:

gPl = lim
Ω→0

Ω−2(φ−1
Ω )∗g = dudv+

n−1∑
i,j=1

Cij(u, 0, 0)dyidyj. (4)

We call gPl, together with the tubular neighborhood of γ , the Penrose limit of (M,g) along γ .
Notice that at Ω = 0, φΩ is no longer a diffeomorphism.

Proposition 1. gPl is defined independently of choice of coordinates putting g in the form (1).

Proof. Let (r, s, [xi]) be a different choice of coordinates such that

g = drds+ ρds2 +
n−1∑
i=1

ψidx
ids+

n−1∑
i,j=1

Θijdx
idxj, (5)

where ρ,ψi,Θij are functions of (r, s, [xi]) and (Θij) is positive definite. As both u and r are
parameters along the geodesic γ we may as well choose them equal u = r. An easy check shows
that the change of coordinates matrix must be of the form⎛

⎜⎝
dr

ds

dxi

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 1 0

0 ci eik

⎞
⎟⎠

⎛
⎜⎝

du

dv

dyk

⎞
⎟⎠

and that under this

Θije
i
ke
j
l = Ckl. (6)

In fact ci must also be zero because the second row in the matrix equation above shows that
s = v+K, K a constant, and the change of basis matrix for the dual basis to the one-forms above
is the inverse transpose:⎛

⎜⎝
∂u

∂v

∂yi

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0

0 1 −ci(e−1)ik
0 0 (e−1)ik

⎞
⎟⎠

⎛
⎜⎝
∂r

∂s

∂xk

⎞
⎟⎠
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As eik is nondegenerate we must have ci = 0. Putting this into the Penrose limit metric (4)

drds+
n−1∑
i,j=1

Θij(r, 0, 0)dxidxj = dudv+
n−1∑

i,j,k,l=1

Θij(r, 0, 0)eike
j
l dy

kdyl

= dudv+
n−1∑
k,l=1

Ckl(u, 0, 0)dykdyl. � (7)

In the recent paper, [3] a covariant description of the Penrose limit without reference to the
adapted coordinates is given.

A sufficient condition for telling when two Penrose limits will be isometric is the following
(the statement of this Theorem appeared in [5] although the proof did not).

Theorem 2 (Covariance of the Penrose limit). Let (M,g), (M ′, g′) be two lorentzian manifolds.
Let γ and γ ′ be two null geodesics inside M and M ′, respectively. Let f : Mγ → M ′

γ ′ be an
isometry of tubular neighborhoods of γ and γ ′ which maps γ onto γ ′. Then the Penrose limits of
(M,g) and (M ′, g′) along γ and γ ′, respectively are isometric.

Proof. Let (U,µ = (u, v, [yk])) be a coordinate neighborhood of a point x on γ such that the
metric g takes the form (1). Define a coordinate neighborhood (f (U), µ′ = (u′, v′, [y′k])) about
f (x) by

µ′(f (x)) = µ(x), (8)

so that u′ = u ◦ f−1 is a coordinate along γ ′. As g = f ∗g′, then g′ also takes the form of (1) in
this neighborhood.

Now consider f ◦ φUΩ : U → U ′. We have

f ◦ φUΩ = f ◦ µ−1 ◦ ψΩ ◦ µ = f ◦ (µ′ ◦ f )−1 ◦ ψΩ ◦ (µ′ ◦ f )

= µ′−1 ◦ ψΩ ◦ µ′ ◦ f = φU
′

Ω ◦ f. (9)

Therefore,

gPl = lim
Ω→0

Ω−2(φUΩ)∗g = lim
Ω→0

Ω−2(φUΩ)∗f ∗g′

= lim
Ω→0

Ω−2(f ◦ φUΩ)∗g′ = lim
Ω→0

Ω−2(φU
′

Ω ◦ f )∗g′

= lim
Ω→0

Ω−2f ∗ ◦ (φU
′

Ω )∗g′ = f ∗g′
Pl. � (10)

3. Hereditary properties

We say that a property of the metric g is hereditary if the Penrose limit gPl has the same
property. For example,

Proposition 3. Suppose (M,g) is locally symmetric/conformally flat. Then (Mγ, gPl) is locally
symmetric/conformally flat. If (M,g) is Einstein then (Mγ, gPl) is Ricci flat, in particular it is
Einstein.
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Proof. Let ∇Ω,RΩ denote the connection and curvature of gΩ := Ω−2(φ−1
Ω )∗g, respectively. As

φΩ is a diffeomorphism if ∇R = 0 then ∇ΩRΩ = 0 forΩ > 0. By a continuity argument we see
that ∇PlRPl = 0.

If Ric(g) = λg then

Ric(gΩ) = Ric(Ω−2(φ−1
Ω )∗g) = Ric((φ−1

Ω )∗g) = λ(φ−1
Ω )∗g. (11)

This gives

Ric(gΩ) = Ω2λgΩ, (12)

and by continuity we see that Ric(gPl) = 0. �

These hereditary properties can be used to easily compute the Penrose limits of anti de Sitter
space AdS. Anti de Sitter space is Einstein and conformally flat hence any Penrose limit is Ricci
flat and conformally flat and thus flat.

In [5] the case of AdS × S is considered. It is a symmetric space and is shown to have two
non-isometric null geodesics leading to two non-isometric Penrose limits which are flat space and
a symmetric plane wave.

Another useful hereditary property is that of geodesic completeness:

Theorem 4. Suppose (M,g) is a geodesically complete lorentzian manifold. Then the Penrose
limit along any null geodesic is geodesically complete.

Proof. Let γ(t) be a geodesic with respect to ∇Pl for t ∈ [a, b]. Without loss we may assume that
γ is contained in a normal coordinate neighborhood of some point on γ so that there is a unique
geodesic from γ(a) to γ(b) with respect to ∇Ω forΩ ∈ [0, 1] (which is possible because ∇Ω varies
continuously with respect toΩ and [0, 1] is compact.). Let γΩ be the unique geodesic with respect
to ∇Ω between γ(a) and γ(b). Then γΩ(t) may be extended to (−∞,∞) as ∇1 is geodesically
complete and φΩ is a diffeomorphism. Continuity implies that the sequence of geodesics γ(Ω) for

Ω = 1

k
“converges" to γ in the following sense. Any neighborhood of any point on γ intersects

all but a finite number of geodesics of the sequence. Therefore, by continuity of the geodesic
equation with respect to Ω, we have that γ may be extended beyond (a, b). �

One last hereditary property, as noted in the introduction, is the following:

Proposition 5. The dimension of the isometry algebra of gPl is no less than the dimension of the
isometry algebra of g.

Proof. See [13] or [5]. �

4. Homogeneous spaces and homogeneous structures

In this section, we will give the definitions and results we need in relation to homogeneous
spaces.

Definition 6. A connected lorentzian manifold (M,g) is homogeneous if its group of isometries
acts transitively on M.

When this is the case then M can be written M = G/H where G is a subgroup of isometries
and H is a closed subgroup of G.
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Definition 7. A homogeneous space M = G/H is reductive when there exists a subspace m ∼=
TpM ⊂ g such that

(1) g = h⊕m,
(2) [h,m] ⊂ m.

It is symmetric if it also satisfies

[m,m] ⊂ h. (13)

(In fact, strictly speaking, this is the definition of weakly reductive. However, for the rest of this
paper we shall assume that H is connected, in which case they are the same thing.)

Definition 8. Let o denote the coset of H in M and fix a frame uo : Rn → ToM of the frame
bundle F. Define the linear isotropy representation λ : H → GL(n,R) by

λ(h) := u−1
o ◦ h∗ ◦ uo, (14)

where h ∈ H , h∗ : ToM → ToM denotes the differential of h at o.p

We may study the geometry of a homogeneous space M by studying the space of invariant con-
nections on M. The following theorem gives a gives a description of the space of such connections
on a reductive homogeneous space.

Theorem 9. Let F be the frame bundle ofM = G/H a reductive homogeneous space of dimension
n with decomposition g = h⊕m. Then there is a one-to-one correspondence between the set of
G-invariant connections in F and the set of linear maps �m : m→ gl(n,R) such that

�m(adh(X)) = ad(λ(h))(�m(X)), (15)

for X ∈ m and h ∈ H .
The correspondence is given by

ωuo (X̃) =
{
λ(X) if X ∈ h,
�m(X) if X ∈ m, (16)

where ω is the connection one-form, X̃ is the natural lift of X ∈ g to F and λ is not only as above
H → GL(n,R) but also the induced Lie algebra homomorphism h→ gl(n,R).

Proof. See chapter X, Theorem 2.1 in [15]. �
Definition 10. The connection obtained by taking �m = 0 is called the canonical connection.

The canonical connection can also be described in the following way. Let θ be the left-invariant
Maurer–Cartan form of G

θg(X) := (Lg)∗(X), (17)

whereLg denotes left multiplication by g and ∗ denotes differentiation. Let σ : U → G be a local
coset representative. Then the pull back of θ by σ splits as

σ∗(θ) = θh + θm, (18)

where θhx (X) ∈ h, θmx (X) ∈ m. The one-form θh defines the connection one-form for the canonical
connection.



1522 S. Philip / Journal of Geometry and Physics 56 (2006) 1516–1533

The geodesics of the canonical connection are curves γ(t) of the form

exp(tX), t ∈ R, X ∈ g. (19)

If (M,g) is symmetric then the canonical connection coincides with the Levi–Civita connection.

Theorem 11. The canonical connection of a reductive homogeneous space is complete.

Proof. See chapter X, Corollary 2.5 in [15]. �

The following theorem of Ambrose–Singer [1] shows the importance of the canonical connec-
tion as a tool for expressing the algebraic condition of reductive homogeneity as the existence of
a solution to a system of differential equations.

Theorem 12 ([1,17,12]). Let (M,g) be a reductive lorentzian homogeneous manifold with Levi–
Civita connection ∇. Then there exists a (2,1) tensor T defining a metric connection ∇̃ := ∇ − T

with curvature R such that ∇̃T = ∇̃R = 0.

Proof. Write M = G/H , with decomposition g = h⊕m. Let ∇̃ be the canonical connection of
M. Let T = ∇ − ∇̃. As G acts by isometries, ∇ is also G-invariant. Hence T and R are G-invariant.
Therefore, see [15], they are both parallel with respect to ∇̃. �

(The first version of this Theorem for riemannian signature appeared in [1]. This was re-
interpreted in terms of the canonical connection in [17] and extended to the pseudo-riemannian
case in [12].)

Remarks:.

(1) T is not necessarily the torsion of ∇̃ (and not necessarily skew-symmetric in it lower indices.)
If Γ̃ ijk are the Christofel symbols of ∇̃ and Γ ijk of ∇ and τ is the torsion of ∇̃ then

τijk = Γ̃ ijk − Γ̃ ikj = Γ̃ ijk − Γ ijk + Γ ikj − Γ̃ ikj = −T ijk + T ikj. (20)

i.e. τ is the skew-symmetrization of T. In fact τ(X, Y )|m = −[X, Y ]m, the component of
[X, Y ] lying in m where X, Y ∈ m (see chapter X, Theorem 2.6 in [15].) Also the restriction
of T to m is given by

T (X, Y )|m = 1

2
[X, Y ]m + U(X, Y ), (21)

where U is the symmetric bilinear mapping of m×m into m defined by

2go(U(X, Y ), Z) = go(X, [Z, Y ]m) + go([Z,X]m, Y ), (22)

where X, Y,Z ∈ m (see chapter X, Theorem 3.3 in [15].)
(2) If (M,g) is symmetric then ∇R = 0 and we can take T = 0.

Such a T-tensor is called a homogeneous structure. A given homogeneous manifold M may
have many different homogeneous structures. Each corresponding to a different choice of groups
G and H. For example, the 7-sphere S7 = SO(8)/SO(7) = Spin(7)/G2 = Sp(2)/Sp(1). (For a
review of Penrose limits from the point of view of homogeneous structures see [10].)

Definition 13. (M,g) is called naturally reductive if there exists a homogeneous structure T
with U = 0, i.e. if τ = T .



S. Philip / Journal of Geometry and Physics 56 (2006) 1516–1533 1523

While reductivity is a property of the isotropy representation, natural reductivity is also a property
of the metric.

Proposition 14. Let (M,g) be naturally reductive. Then the geodesics of the Levi–Civita connec-
tion coincide with the geodesics of the canonical connection.

Proof. Let ∇ denote the Levi–Civita connection and ∇̃ the canonical connection corresponding
to the homogeneous structure T with U = 0. Then T will be skew-symmetric in its lower indices
and consequently

∇XX = ∇̃XX+ T (X,X) = ∇̃XX. (23)

Hence the geodesic equations for the two connections are the same. �

We may rewrite Theorem 12 in terms of the torsion of ∇̃ instead of T and then include a
converse:

Theorem 15. Let (M,g) be a connected, simply connected, lorentzian manifold. Then (M,g)
is reductive homogeneous if and only if there exists a complete affine metric connection ∇̃ with
torsion τ and curvature R such that ∇̃τ = ∇̃R = 0.

Proof. See chapter X, Theorems 2.6–2.8 in [15]. �

Theorems 12 and 15 above describe the reductive homogeneity in terms of a metric connec-
tion on the tangent bundle. In fact, we can describe the Killing vectors of an arbitrary pseudo-
riemannian manifold as parallel vector fields of a covariant derivative on an extended bundle.

Let X be a vector field on a lorentzian manifold (M,g). Let AX : Y �→ −∇YX. Then X is a
Killing vector if and only if AX is skew-symmetric with respect to g. As a consequence of the
Killing identity we also have the equation:

∇XAζ = −R(X, ζ)

Now consider the bundle E = TM ⊕ so(TM). If we define a covariant derivative D on E by

DX(ζ, A) := (∇Xζ + A(X),∇XA+ R(X, ζ)).

Then the parallel sections of E with respect to D are precisely the Killing vectors of g. Thus, a
Killing vector is completely determined by

(ζ(p), Aζ(p))

at any point p and by parallel translation by the covariant derivative D.
Finally we make the

Definition 16. A geodesic γ is called homogeneous if it is the orbit of a 1-parameter subgroup
of isometries.

Note: on a riemannian space this definition is equivalent to writing the geodesic in the form
γ(t) = exp(tX)o for some X ∈ g (see [20].) However, if the geodesic γ(t) is null one may have
to change its parameterization in order to write it in the form exp(sX)o. We call a geodesic of the
form γ(t) = exp(tX)o an absolutely homogeneous geodesic. Also notice that a homogeneous
geodesic is not necessarily a geodesic of the canonical connection as a geodesic of the canonical
connection is of the form exp(tX) with X ∈ m. We shall call a homogeneous geodesic which is a
geodesic of the canonical connection a canonical homogeneous geodesic.
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These will be the geodesics of interest when deciding whether a Penrose limit is homogeneous
or not. A useful criteria for distinguishing homogeneous geodesics is the following,

Proposition 17. Suppose M is a lorentzian reductive homogeneous space. The geodesic γ(t) with
γ(0) = o and γ ′(0) = X ∈ g is a homogeneous geodesic if and only if

B(Xm, [Z,X]m) = λB(Xm, Zm) (24)

for all Z ∈ g and some λ ∈ R. It is absolutely homogeneous if and only if λ = 0.

Proof. This is a slight generalization of the proof given in [20]. �

Definition 18. A vector X ∈ g which satisfies (24) is called a geodesic vector.

Note: by putting Z = X in (24), we see that if B has riemannian signature then we must have
λ = 0.

Remark:. Suppose γ is a geodesic parameterized by u. If γ is homogeneous then there is a Killing

vector ζ such that ζp = γ ′
p at all points p ∈ γ . But the geodesic vector field

∂

∂u
is not necessarily

a Killing vector field. If the Killing vector field ζ is given by
∂

∂t1
, then t1 may not be part of a

twist–free coordinate system; that is a coordinate system (t1, . . . , tn), in which we can write
the metric in the form gijdt

idtj such that d(g1i dt
i) = 0. In particular, if γ is a null homogeneous

geodesic then we may not be able to write g in the form of (1) with
∂

∂u
a Killing vector.

Proposition 19. A geodesic γ is homogeneous if and only if there exists a solution (γ,A) to the
Killing transport equations with A(γ ′) = 0.

5. Penrose limits along homogeneous geodesics

In this section, we will give three Theorems which give sufficient conditions for homogeniety
to be hereditary.

Theorem 20. The Penrose limit along a null geodesic
∂

∂u
which is a Killing vector is flat.

Proof.

0 = L ∂
∂u
g = d(i ∂

∂u
g) + i ∂

∂u
dg = d(dv) + ∂α

∂u
dv2 + ∂βi

∂u
dvdyi + ∂Cij

∂u
dyidyj.

Therefore, C is independent of u and hence gPl is flat. �

Theorem 21. The Penrose limit of a lorentzian metric along a homogeneous geodesic γ is
homogeneous.

Proof. On a plane wave ds2 = dudv+ Cijdyidyj , we have the Killing vectors

∂

∂v
,
∂

∂y1 , . . . ,
∂

∂yn−1

which are independent at each point p. So to prove gPl is locally homogeneous it is enough to

show it has a Killing vector which agrees with
∂

∂u
= γ ′ at p. Suppose that ζ is a Killing vector
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such that ζ|γ = f
∂

∂u
|γ . Then ζ|γ is generated by Killing transport of (ζ(p), Aζ(p)) along γ . Now

by definition,

(Aζfγ
′)|γ = (Aζζ)|γ = 0,

where by |γ we mean restriction to γ ∈ M, not restriction of the tangent bundle. Therefore, if we
write Aζ in components:

Aζ =
∑
i,j

(Aζ)
j
i dx

i ⊗ ∂

∂xj
,

we see that

(Aζ)
yi

u |γ = 0.

Also, as ζ is a Killing vector, we have

g(AζX, Y ) = −g(X,AζY ).

Therefore,

(Aζ)
v
yi

|γ = (Aζ)
v
u = 0.

Note that the restriction to the geodesic is not necessary for (Aζ)vu.
Now consider the pull-back of the Killing transport covariant derivative under the Penrose

limit map φΩ;

(φ−1
Ω )∗Dζ(X) = (φ−1

Ω )∗∇ζ(X) − (φ−1
Ω )∗Aζ(X).

The components of Aζ scale under the Penrose limit map in the following way:

(Aζ)
yi

u (u, v, yk) �→ Ω−1(Aζ)
yi

u (u,Ω2v,Ωyk)

(Aζ)vyi (u, v, y
k) �→ Ω−1(Aζ)vyi (u,Ω

2v,Ωyk)

and other components which either stay constant or tend to zero as Ω → 0. Taking the limit as
Ω → 0 by using L’Hopital’s rule, we have

(Aζ)
yi

u (u, v, yk) �→ yj ∂
∂yj

(Aζ)
yi

u (u, 0, 0)

(Aζ)vyi (u, v, y
k) �→ yj ∂

∂yj
(Aζ)vyi (u, 0, 0)

Therefore,

(DPl)ζ(X)(u, v, y) := lim
Ω→0

[Dζ(X)(u, 0, 0)]

is well-defined and along with

(DPl)ζ(A) := (∇Pl)ζA− RPl(ζ,X),

defines a Killing transport covariant derivative on along γ with respect to gPl. Therefore, parallel
translation by DPl along γ generates the remaining Killing vector needed.

Corollary 22. If γ is an (absolutely) homogeneous geodesic of g then it is also an (absolutely)
homogeneous geodesic of the Penrose limit of (g, γ).
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When (M,g) is a reductive homogeneous manifold we can use the same strategy as above to
construct a homogeneous structure on the Penrose limit:

Proposition 23. The Penrose limit of a reductive lorentzian homogeneous manifold along a
canonical homogeneous geodesic is locally reductive homogeneous.

Proof. Let (M,g) be a reductive homogeneous space with a null homogeneous geodesic γ . From
the Ambrose–Singer Theorem we have a connection ∇̃ such that ∇̃T = ∇̃R = 0. Let Mγ be a
tubular neighborhood of γ as above and consider φΩ(Mγ ). Now φΩ is a diffeomorphism for
Ω = 0 so φΩ(Mγ ) is reductive homogeneous for Ω > 0. This defines the metric connection

∇̃Ω := (φ−1
Ω )∗∇̃ = (φ−1

Ω )∗∇ − (φ−1
Ω )∗T. (25)

γ is a homogeneous geodesic of (M,g) so T is a tensor of type (2, 1)

T = ∇ − ∇̃ =
n+1∑
i,j,k=1

T kijdx
i ⊗ dxj ⊗ ∂

∂xk
. (26)

Under the Penrose limit map φΩ the coefficients scale in the following way

T v
uyi

�→ Ω−1T v
uyi

(u,Ω2v,Ωyk)

T vuu �→ Ω−2T vuu(u,Ω2v,Ωyk)

T
yi

uu �→ Ω−1T
yi

uu(u,Ω2v,Ωyk),

and terms which either remain the same or tend to 0 in the limit Ω → 0. Suppose that γ is

a canonical homogeneous geodesic. Then there is a Killing vector ζ such that ζ|γ = f
∂

∂u
|γ .

Then ζ|γ is generated by parallel transport by the canonical connection of ζ(p) along γ . Now by
definition,

(∇γ ′γ ′)|γ = 0 and (∇̃ζζ)|γ = 0

where by |γ we mean restriction to γ ∈ M not restriction of the tangent bundle. Thus,

0 = (∇̃fγfγ)|γ = (∇fγ ′fγ ′)|γ − T (fγ ′, fγ ′)|γ = fdf (γ ′)γ ′|γ − f 2T (γ ′, γ ′)|γ ,
and therefore,

T y
i

uu|γ = 0.

Also, as ∇̃ is metric we have

0 = (∇̃Wg)(X, Y )

= (∇Wg)(X, Y ) + g(TWX, Y ) + g(X, TWY )

= g(TWX, Y ) + g(X, TWY ),
(27)

as ∇ is metric. Hence using (1) we see that

T vuu = 0 and T v
uyi

|γ = 0, (28)

The Levi–Civita connection of the Penrose limit along γ,∇Pl, is equal to

lim
Ω→0

(φ−1
Ω )∗∇. (29)
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Now, using L’Hopital’s rule to take the limit of (φ−1
Ω )∗T as Ω tends to 0 we find,

T v
uyi

�→ yj
(
∂
∂yj
T v
uyi

)
(u, 0, 0)

T
yi

uu �→ yj
(
∂
∂yj
T
yi

uu

)
(u, 0, 0),

So we can make the definition TPl := limΩ→0(φ−1
Ω )∗T , whence by (25), the limit ∇̃Pl :=

limΩ→0 ∇̃Ω is well defined. Now

{∇̃ΩgΩ|Ω ∈ [0, 1]}
is a continuous path in the space of tensors of type (3, 0) on γ . Therefore, continuity shows
∇̃PlgPl = 0. Similarly

∇̃PlgPl = ∇̃PlTPl = ∇̃PlRPl = 0. (30)

Applying Theorem 15 gives the result. �
Corollary 24. A homogeneous structure T has a well–defined Penrose limit along a null geodesic
γ(t) if and only if γ(t) can be re–parameterized to a geodesic of the canonical connection with
respect to T.

Proof. T has a well–defined limit if and only if T y
i

uu|γ = T vuu|γ = 0. The proof of Proposition 23
shows that this is the case if and only if γ can be re–parameterized to a geodesic of the canonical
connection. �
Corollary 25. Suppose that (M,g) is a naturally reductive space. Then for any null canonical
geodesic γ , the Penrose limit of (M,g, γ) is homogeneous.

6. Homogeneous plane waves

We can learn more about the hereditary properties of homogeneity by studying the space of
homogeneous plane waves. In [7], Blau and O’Loughlin have classified all homogeneous plane
waves into two classes. The first class consists of complete metrics and the second class incomplete
metrics:

Theorem 26 (Blau–O’Loughlin [7]). There are two classes of homogeneous plane waves:

(1) g = 2dx+dx− + (ex
+fA0e

−x+f )ijzizj(dx+)2 + ∑
i(dz

i)2. Complete metrics.

(2) g = 2dx+dx− + (ef log x+A0e
−f log x+ )ijzizj

(dx+)2

(x+)2 +
∑
i

(dzi)2. Incomplete metrics (singu-

larity along x+).

The isometry algebra of the generic homogeneous plane wave is given by:

[ei, Yj] = δijZ, [ei, X] = −Yi,
[Yi, Yj] = 2fijZ, [X,Z] = aZ

[X, Yi] = (aδij + 2fij)Yj + ((A0)ij − afij − fikfkj)ej

Here (A0)ij is symmetric and fij skew–symmetric. The isotropy is generated by the ei’s. From
this it is clear that homogeneous plane waves are reductive. The non–singular plane waves have
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an isometry algebra with a = 0, while the singular plane waves have an algebra with a = 1. By
calculating the homogeneous structure associated to these reductive splittings we see that the
non–singular plane waves are naturally reductive, while the singular plane waves are not.

Contained in the class of naturally reductive plane waves are the symmetric plane waves, also
called the Cahen–Wallach spaces (see [9] for the original paper or [11].) These are given by taking
fij = 0 in (1) of Theorem 26 and can be diagonalised to the form:

g = 2dx+dx− +
∑
i

Ai(z
i)2(dx+)2 +

∑
i

(dzi)2

with Ai constant.
Combining this classification with Corollary 22 we obtain the

Theorem 27. The Penrose limit of a lorentzian space along an absolutely homogeneous geodesic
is a naturally reductive plane wave.

Also we have the

Proposition 28. The Penrose limit of a geodesically complete lorentzian metric g along a homo-
geneous geodesic is naturally reductive homogeneous.

Proof. If g is geodesically complete then the Penrose limit is complete. The classification
of homogeneous plane-waves shows that a complete homogeneous plane-wave is naturally
reductive. �

7. Examples

In this section, we will give some examples to show that the above Theorems cannot be
strengthened any further.

First we will show that the converse to Theorem 21 is not true, i.e. we give an example which
shows that the Penrose limit of a non–homogeneous geodesic in a non–homogeneous space may
be homogeneous. Consider the metric

g = 2dudv+ udv2 + √
u

∑
i

(dxi)2. (31)

This is an incomplete and non–homogeneous metric with no Killing vector in the ∂u direction.
Therefore, the null geodesic given by ∂u is not homogeneous. However the Penrose limit of (g, ∂u)
is given by

2dudv+ √
u

∑
i

(dxi)2. (32)

This is a reductive plane wave [23]:
Next we will consider non–homogeneous geodesics in a homogeneous space. In [24] Patricot

calculated the Penrose limits of the Kaigorodov space Kn+3 which is Rn+3 together with the
metric:

gn+3 = e−2nLρdx2 + e4Lρ(2dxdt +
n∑
i=1

(dyi)2) + dρ2 ,

where L = 1
2

√
− �
n+2 .



S. Philip / Journal of Geometry and Physics 56 (2006) 1516–1533 1529

This is a homogeneous space whose isometries are generated by

K(0) = ∂

∂t
, K(x) = ∂

∂x
, K(i) = ∂

∂yi
, Li = x

∂

∂yi
− yi

∂

∂t
, Lij = yi

∂

∂yj
− yj

∂

∂yi
,

J = ∂

∂ρ
− at

∂

∂t
− bt

∂

∂x
− cyi

∂

∂yi
,

Here a = (n+ 4)L, b = −nL and c = 2L.

where Lstuv = −δsuLtv + δtuLsv − δjlLik + δilLjk. This isometry algebra is the semidirect prod-
uct of an extended Heisenberg algebra and so(n) and has dimension (2n+ 3) + 1

2n(n+ 1). The
homogeneous space as given by the full isometry group is non–reductive. However, the transi-
tive subgroup which is generated by K0,Kx,Ki and J gives Kn+3 as a reductive homogeneous
space.
Kn+3 has 3 non-isometric Penrose limits. The first is along a Killing vector and is thus flat.

The second along a homogeneous geodesic is a reductive homogeneous plane wave and the third
is along a non–homogeneous geodesic is non–homogeneous.

Patricot also considered the space Kn+3 × Sd where Sd is sphere with round metric which is
again a non-reductive homogeneous space. It has four non-isometric Penrose limits. Three along
geodesics which are constant on the sphere and hence have the same Penrose limits as Kn+3; the
flat metric and a reductive plane wave and a non–homogeneous metric. The fourth Penrose limit
is along a non-homogeneous geodesic which wraps around the sphere and Kn+3 and is also a
non-homogeneous plane wave.

Thus, the Penrose limit of a non-reductive homogeneous space along a non-homogeneous
geodesic is not necessarily homogeneous. The next example will illustrate the existence of non–
canonical homogeneous geodesics and will show that the Penrose limit of a homogeneous structure
along such a curve will blow up.

B. Komrakov Jnr has compiled a complete classification of four-dimensional pseudo-
riemannian homogeneous spaces [16]. In his paper he considers the isotropy representation
ρ : h→ gl(g/h) of a homogeneous space G/H and classifies first all the complex forms and
then the real forms of the subalgebra (ρ(h))C ⊂ so(4,C). The result is a list of the possible Lie
algebras g and chosen subalgebras h and the associated isotropy representation given as a matrix.

We can then use the Maurer–Cartan form to recover the metric from B. We summarize below
some of the properties of this classification:

• Number of isotropy representations admitting riemannian metrics: 6
• Number of isotropy representations admitting lorentzian metrics:14
• Number of isotropy representations admitting metrics of (2,2) signature: 30
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(There is some overlap in these cases where a representation admits metrics of different
signatures.)

• Number of symmetric/reductive algebras admitting a riemannian metric: 21/29
• Number of symmetric/reductive/nonreductive algebras admitting a lorentzian metric: 35/64/6
• Number of symmetric/reductive/non-reductive algebras admitting a metric of (2,2) signature:

57/123/9

By studying Komrakov’s list we see that there does not exist a four–dimensional lorentzian
homogeneous space with a non–canonical homogeneous geodesic. However there do exist 5–
dimensional examples as we will now show. Consider the algebra (Komrakov number 1.12.11
extended by a central element.)

This defines a reductive homogeneous spaceG/H withm the span of {u1,u2,u3,u4,u5} and
h spanned by e1. The corresponding isotropy representation is skew–symmetric with respect to
the bilinear form B:⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(33)

To determine the induced metric we make a choice of local coset representative

σ = exp(x1u1) exp(x2u2) exp(x3u3) exp(x4u4) exp(x5u5) : M → G, (34)

and calculate the Maurer–Cartan form

σ−1dσ = cosh(2x3)dx1u1

+ (x4 sinh(2x3)dx1 + x2 cosh(x3)dx1 + cosh(x3)dx2 + x4dx3)u2 + dx3u3

+ (−x4 cosh(2x3)dx1

− 2 sinh(2x3)dx1 − x3 sinh(x3)dx1 − sinh(x3)dx2 + dx4)u4 + dx5u5.

The metric is given by B((σ−1dσ)m, (σ−1dσ)m). The non–zero components of the homogeneous
structure T restricted to the subspace m are given by:

1 = T414 = T221 = T243 = T244 = T423 = T424,

−1 = T212 = T234 = T432 = T441.
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Now consider the vectorU = u2 + 1√
2
u3 +

√
3
2u5 + √

2e1. This is an absolutely geodetic vector
and hence generates a homogeneous geodesic. However this geodesic is not a geodesic of the
canonical connection and thus the Penrose limit of the homogeneous structure along exp(tU)(p)
will blow up:

T (U,U)|m = u1 − 1

2
u4

Pl→∞. (35)

However, the algebra g has the following transitive subalgebra:

The non–zero components of the homogeneous structure are given by

−1 = TU12 = T441, 1 = T221 = T21U = T212 = T414,
1√
2

= TU24 = T24U.

This homogeneous structure does not blow up under the Penrose limit along U. It is not clear
that every homogeneous geodesic is canonical with respect to some reductive decomposition as
in this case. However, this is true for all the null homogeneous geodesics of four–dimensional
lorentzian homogeneous spaces.

8. The existence of homogeneous geodesics

Finally we would like to make a remark on the existence of null homogeneous geodesics. The
following Theorem has been proven in [19,18].

Theorem 29 (Kowalski–Szenthe). Every homogeneous riemannian manifold admits at least one
homogeneous geodesic through every point.

Since every homogenous riemannian manifold is reductive (see [26]) it appears that this The-
orem is also true in the case of reductive lorentzian manifolds.

Proposition 30 (Every reductive homogeneous lorentzian manifold admits at least one homoge-
neous geodesic through every point).

In fact all lorentzian homogeneous examples known to the author (and this includes all four–
dimensional homogeneous spaces appearing on Komrakov’s list,) contain at least one null ho-
mogeneous geodesic although not all of them contain an absolutely homogeneous one as the
following example (Komrakov number 1.12) shows: together with the bilinear form
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B =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠

This is a reductive algebra and so using Proposition 17 it can be shown that the homogeneous
space derived from this algebra and bilinear form has no null absolutely homogeneous geodesics.
(This is in fact effectively the only four-dimensional lorentzian homogeneous space without any
null absolutely homogeneous geodesics.) However it does have a family of null homogeneous
geodesics.

U = Au4 ± Au2 + Be1 and λ = −2A with A,B ∈ R
or

U = Au2 + Bu3 + Cu4 and λ = −C with A2 + B2 = C2, A, B,C ∈ R.
To the author’s knowledge there are no known results about the existence of homogeneous

geodesics in the nonreductive case.
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